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4 I. INTRODUCTION

This paper considers a non-repairable system of thrce components paying

A attention to various system structures that result from the use of non-identical
components. The objective of the analysis is to derive and investigatc state

probabilities! for the system assuming different levels of information available about

the system, and, as far as applicable, with respect to different arrangements of the

- components within the system. Although limited to a 3-component system, the basic

] results may be extended to non-homogeneous systems with more than three elements.

A stochastic model was found to be a convenicent approach to the problem. It is

.j developed in Chapter 11 together with the entire set of transition probabilities. That

) chapter will also show the system survival function, distribution function, and density

~ function as functions that do not depend on the order of the components within the

system. Chapter 111 will derive the state probabilities in three steps. A subsct of the

’ transition probabilities will immediatedly determine the state probabilitics of a system -

: in unknown condition. Special emphasis 1s given to a system which is known to be in

L. working condition. In this casc the resulting conditional state probabilitics will be

} discussed in their limiting distribution and in their relation to the system failure rate;

2 ' the position of the most reliable component in the system will turn out to be significant

} for the lmiting conditional state probabilities. The final step will derive state

! probabilities for a system which is not monitored continuously.

Most computational work is not shown within the paper, however, the reader 1s

' provided with extensive tables which list the basic results for all possible system

',E structures.

N A.  THE MODEL OF THE 3-COMPONENT STANDBY SYSTEM

The svstem under consideration throughout this paper consists of three

’ components that may be thought of as an original and two spare components. Only

N one of the components is active at a given point in time and is exposed to failure.

N When a component fails it i1s replaced by one of the spares. if available. The

.

) lllu. svstem will he said to be in qtatc 1if L\d(.{l\ 1 of the com’poncntc arc
DOWYN; thus the statc probabilitics correspond to nc probability that 0,1, 2, or ull

. components have failed at some time t (see Chapter 1),
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E" switch-over is assumed to cause no initial shock to the new component and to occur

ﬂ\:’ immediatedly after failure and in a negligible amount of time.

The system works (and is said to be UP) as long as at least onc of its

'~ components is operable; it fails (is DOWN) if all components have failed.

:r:: No repair facility is provided for a broken component; thus it remains in the
~ DOWN-condition throughout the mission once it has failed. This implies that the
- system itself will fail with certainty in a finite amount of time.

1:_*.: It will always be assumed that the system starts its useful life at t=0 with all
components in the UP-condition.

' B. IMPORTANT ASSUMPTIONS OF THE MODEL

- The main characteristics of the system arise from three basic assumptions:

'.'.'.EZ (a) Components in the spare status cannot fail. Therefore the failure rate of a

' spare is O (cold standby) and the lifetime of a component starts at the moment
' it 1s switched into the active state.

_ (b) The active component has an exponential life distribution, i.e., there is no
::'_' effect of age on the component failure rate. . .
":-_-‘ (c) All life lengths are mutually independent; ie., the performance of the
' component currently active does not depend on the performance of its .

:‘, predecessor(s).

(: These assumptions are essential for the Markovian model used later on; they establish

;:-: constant transition rates throughout the states of the system with changes possible

; only at the time a failure (= transition to the next state) occurs.

-; Note, however, that the life lengths of components in the active state arc not

f_. assumed to be distributed identically. Thus the system may consist of components with
'E;‘_ different expected lifetimes.

o Whenever 1t i1s required to distinguish between systems with respect to the

:' homogeneity of their components, then:

’.:-:; (a)  Structure | ()\oxklzlz) will refer to a system with three components cach
\ ' having a different failure rate (the most gencral casce),

\" (b)  Structure 2 (A, kj= A = 1) will denote a system with two components of the
_.;: ' same kind (having failure rate A) whereas the component used in the ith place
| has a different failure rate A ;
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(¢) Structure 3 ()\0=),1=)~2=l) will denote a system of three identical

components with common failure rate A.
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II. MODELING THE 3-COMPONENT STANDBY SYSTEM

The system may be found at any point of time t to be in one out of four possible
states {0,1,2,3}. It will be said to be in state i if exactly i of the components are
DOWYX; thus the system will be UP in states {0,1,2} and DOWN in state 3. Since no
repair is provided, it is immediate that the system after starting its life at t=0 in state 0
will transit into state 1 and 2 and finally be absorbed in the DOWN-state 3.

The amount of time, T, the system spends in state i before making the transition
into state  1s a random variable, distributed exponentially with mean 1/A;, where A is
the failure rate of the component active in state i. By assumption T, is independent of
previous component failures in the system.

The system, or better vet the underlying process, may thus be modeled as a
continuous-time  Markovian process with stationary (homogeneous) transition
probabilitics [Refs. 1,2:pp. 20, 234).

Morcover, the process constitutes a pure birth process with a finite state space. ,
Transitions are possible within the four states only from state i to state i+ 1 and occur

at rate h,. State 3 is absorbing and allows no further transitions once it has been
rcached.

A.  TRANSITION PROBABILITIES

By the memoryless property of the exponential sojourn times in a
time-homogeneous Markovian process, the transition probabilities are conditioned only
on the state of the system at time t=0 but not on the amount of time the system has
alrcady spent in that state.

Let Z(t) = 0,1,2,3 indicate the state of the system at time t, and
I’ij(t) = PZ(t)=]1Z(0)=1i]

be the probability that a process in state 1 at time t=0 will be in state j some time t
later.

Then the transition probabilitics Pij(t) may be obtained by solving the
differential sct of the Kolmogorov forwards equations [or the pure birth process, as
done by Ross [Ref. 2:p. 244].

10
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2 In genera! formulation
= okt
Pii(t) =¢"i
) t
- Pl = hygehst f bt P (9 ds
. fori=0,1,2 and 1+15)<3.
1 The computational work is too bulky to be presented within this paper, however,
N the resulting transition probabilities are completely listed in Tables 111 . . . VII (sce
X Appendix A).

B. SYSTEM SURVIVAL-, DISTRIBUTION-, AND DENSITY FUNCTIONS
i We will assume in what f{ollows that at time t=0 the system is new, that is that
- 7(0)=0.
Let T be the failure time of the system. Then the probability that the system will
[ survive a mission of length t is just the probability that the system will not transit into
the DOWN-state before the end of the mission

F(y = P[T>t] = 1 =Py;(1)
[Ffurthermore

F(t) = PIT<t] = Pyy(v)
and

F( = drde[F(o) = d/de [P,

The system survival function F(v), distribution function F(t), and the density

function f(t) are summarized in Table VIII for the three possible structures of the

- svstem (sce Appendix B). In either case, the formulas obtained for the functions are
completely symmetric in the indices of the )\i. Thus they do not depend on the order in

which the various components arc used in the system.

11
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I11. STATE PROBABILITIES IN THE 3-COMPONENT SYSTEM

In the following, state probabilities for the 3-component system are derived for
three levels of information about the system:

(a) State probabilities Pj(t) for a system which are unconditioned on any
information about its condition after the initial start-up at t=0

(b) Conditional state probabilities Qj(t) for a system which is known to be in
UP-condition at time t.

(¢) Conditional state probabilities Pj*(t) for a system which was observed to be in
UP-condition at some time s<t.

[f the system was observed to be in a specific state i at some time after start-up
then this information would reinitialize the Markovian process and either lead back to
one of above cases or to a different model with less components. Thercfore this case
will not be discussed in the following analysis.

Most of the cxpressions developed for the state probabilities in this chapter.
contain scveral exponential terms (or a combination of two or more exponential and
constant terms). Unless we restrict to simple cases, the attempt to calculate extreme
points or intersection points for the functions will lead to equations which can onlv be
solved using numerical procedures. Therefore, an approach is used which illustrates
the functions in probability plots for various paramecter values and stresses special
features and limiting behaviour as t— 0,

A. STATE PROBABILITIES OF A SYSTEM IN UNKNOWN CONDITION
Within this section it is assumed that no information about the state or the
condition of the system is available.
The probability that a system will be found in state j at time t, given it started its
uscful life at t=0 in state 0, is just the probability of a transitica into state | during

(0,t). To simplify notation, we may define
Pj(t) = PZ(t)y=j1Z0)=0] = Poj(t)

These state probabilitics P.(t) have been plotted in Figures 3.1 to 3.3 for three

failure rate combinations and over a standardized time axis (in multiples of the system
MTTE = LAy + LA+ 1))

, W, O, YLTw
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Figure 3.1 Unconditional State Probabilities Pj(t), )‘o:)‘f)“z = 4:2:1.

SRR LI

l'- l.'{' ,- I l‘.

ol
.C

AN 4 . ,l'

1.0

0.8

06

04

0.2

o | | -

MTTF

e

A

-«
(RIAISIV .

- -.';\’ LN ‘_‘.‘._-.:;\

Figure 3.2 Unconditional State Probabilities Pj(t),

G S A NN P
o e e
Iz .‘- e 3]

R N




N » F FEEEES Mo & WY WSS 4 w v § | §F § AT =7

Db At AL LT AAR A1) Rl R I

Ot ] } 1 | -

0 ! MTTF 2 >

Figure 3.3 Unconditional State Probabilities Pj(t), }'0:)'1:)"2 = 1:2:4.

General information about the state probabilities Pj(t) may be obtained by

considering their first derivatives
d'dt [Pj(t)] = —)»ij(t) + lj_le_l(t)

The state probabilities Pj(t) will increase if the probability of a transition into
state | exceeds the probability of a transition out of state j at time t. Therefore it is
immediate that Py(t) and P4(t) are monotonously decreasing, respectively increasing
functions in t.

P (t) and P,(t) appear to constitute unimodal functions® whose maxima can be
located at

(a) For Pl(t):

t = i (Ink, —Ink ) if hgzh,
1

0
and

3 . . . .
“A proof for this statement was not found in the literature, however, all trials to
construct a counter example have failed within the work done for this study.
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(b) For Pz(t):
A closed form expression exists only for a homogeneous system:
2 .
t = ~ if A=k, =2,=h
The limiting state probabilities
0 if 1=0,1,2
1 if j=3
confirm the expectation that the system will finally be absorbed in the DOWN-state 3.

P; = lim Py(t) =

B. STATE PROBABILITIES FOR A SYSTEM IN KNOWN CONDITION

The following sections will consider systems which, without revealing their exact
states, provide information enough to decide on their overall condition —system UP or
DOWN ~ at time t.

If the system is known to be UP at time t then it may be in either one of the

-

states {0,1,2} with probability

Q,(t) = P[Z(t)=jl system UP, Z(0)=0] (eqn 3.1)
Pg4t) :
= 2 ]=0,l,2
I=Py3(t)

which can be readily obtained from the transition probabilities in Tables 111 ... VII.
Recalling that Poj(t) = Pj(t), the conditional state probabilities may be rewritten

Q1) = Pyt i=0,1,2

1= Py(t)
and, for a fixed t, can thus be obtained by multiplying the state probabilities Pj(t). we
would get without the additional information, each by the same factor c={[1~ 1’3(t)]'l.
This factor ¢ is greater than or equal to 1 for all t and, as a monotonously increasing
function of t, may get as large as infinity as t-» 0,

The probability plots for the conditional state probabilities Q,(v), in Figures 3.4
to 3.6, are based on the same ratios in the failure rates as the plots of Figures 3.1 to

3.3 and may provide a rough idea about the shape of the functions Qj(t).
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Figure 3.4 Conditional State Probabilities Qj(t), Agihyih, = 421
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Figure 3.5 Conditional State Probabilities Qj(t), Agihyd, =
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Figure 3.6 Conditional State Probabilities Q,(v), Aghph, = 1124,

I. Limiting State Probabilities
The plot of Figure 3.6 suggests the existence of limiting conditional state
probabilities that are not necessarily equal to O or 1, uniike the case of the
unconditional state probabilities Pj(t). State 2 does not seem to take over the part of
an absorbing state in all cases, as we might have expected.

To derive the limiting conditional state probabilities

Q, Et_h,‘é‘oQi(‘) =tE.mooP[Z(t)=] [ system UP, Z(0)=0]

for j=0,1,2 it is necessary to pay close attention to the order in which components
with different failure rates are used in the system. We also need to specify which
component has the minimum failure rate. It is therefore convenient to derive the
limiting probabilities separately for the different orderings of component fatlure rates
possible within the system.
a. Structure I (A =\ zM,)
In this structure the failure rates of the components are all different; we

can, therefore, specify a unique minimum failure rate A,. It should be recalled that the

17
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o5
E: indices of the A, denote the position of the corresponding component within the
\ system (initial component or ith spare); thus e.g., ).1=mjn()»°,)\1,)»2) will express that
N :
. the first spare is assumed to be the component with the smallest failure rate used in the
~ system.
;_: Using Equation 3.1 and Table III we get the limiting probability matrix
- shown in Table I.
N
\:.
o TABLE |
"E LIMITING STATE PROBABILITIES Qj, AEh =M,
Qp Q Q,
% S I . K A PN, F R RN
< 1%2 172 2
A, =min(A k) 0 }'i'}‘l % ,
N 2 2
L
" A, =min(Ayh h,) 0 0 1 .
A b. Structure 2 (A, hy=h =)
The limiting state probabilities Qj may be achieved either by calculating
- the limits of the Qj(t), as t=0, or they may be derived from the general structure
! (Table 1) using the following rules:
- (a) If A <A, Le, if there is a unique component associated with the minimum
"_' failure rate, then use that row of the matrix which corresponds to the position
-'::l of the singular component within the system
(by If 7\<ki, Le., if the minimum failure rates applies to two components, then
o use that row of the matrix which corresponds to the position of that
N component with failure rate A which is used last within the system (i.e., if two
. rows in the matrix apply then use the lower one).
> The limiting state probabilities are listed in Table I1.
v
- 8
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W
N
L TABLE II
| LIMITING STATE PROBABILITIES Q;, A, A, =, =X
2
N
.‘.
. Svstem Structure Q Q, Q,
- A -A)2 A (A-A A
- A e )
C Ag> A 0 0 l
b A A
Case h-A,-h: Ay <) 0 ] -1 —L
b Ay> A 0 0 !
::: Case X-X-lz: )"z <A 0 0 1
A Y
- A> A 0 | - — -
: A, A, )

~ .
c. Structure 3 (\y=h =k, =}h)
In this structure the system consists of three identical components. The
b limiting state probabilities may be calculated to be
Q=9
~
:::: Q =0
= Q, =1
= or thev mayv be looked up in Table [ by taking the last row of the matrix (in
- accordance to the rule that points to the last used component, if more than one has the
0 same minimum failure rate).
J 2. Interpretation of the Limiting Conditional State Probabilities
‘. One mught have expected to find systems working on their very last spare, if
thev are still alive after use for a sufficiently large amount of time. However, the
2: results show, that under certain arrangements of the component failure rates, we may
:: very well find systems working cven on their imtial component.
-‘v\
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An explanation for this system behaviour is most readily obtained by looking
at the upper triangular probability matrix in Table [ for a system composed of
components all with different failure rates. Obviously, the component with the
minimum failure rate takes on an important position within the system. Given that the
system is UP, the limiting conditional state distribution will put all its probability mass
onto states corresponding to the most reliable component (main diagonal in the
matrix) and its possible replacements. Thus functioning systems drop through initial
less reliable components at least onto their most reliable ones. One will always find
systems which remain working on their most reliable component. Others will continue
to transit into further states (unless the most reliable component is also the last one
available). If the initial component is also the most reliable one then either one of the
spares may be found to carry the system in the limiting distribution; there is no second
‘drop through’ to a spare with a smaller failure rate. The probabilities that a svstem
will eventually be found in states corresponding to the most reliable component and its
possible replacements depend only on the failure rates associated with these
components.

In case of the more restrictive structures 2 and 3 we are not always able to -
define a unique component to be the most reliable one. Previous observations,
however, remain valid if we assign the attribute ‘'most reliable’ to that component
among identical ones, which is used last within the system. Therefore, if more than one
component shares the same minimum failure rate, we will observe systems dropping
through identical components and, in the limiting probability, a svstem with three
identical components will be found working on its last spare with certainty.

3. System Failure Rate as a Linear Function of the Conditional State Probabilities

The system failure rate r(t) mav be considered to be the probability of an
instantancous system failure at any time t, given the system survived up to time t.

Then

P[system fails in (t,t+h)|system UP at t]

0 h

. 2 P{Z(t+h)=3|Z(t)=i] P[Z(t)=i] svstem UP]
- le-n-:O i= h

r(t) = lim
h—

-

B LIl X

h—0 =0 h

2 P..(h)
= ¥V Q.(t) lim —i

=0 ¥ h—=0 h
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Since the transition probabilities

J(h)
p.. = lim —-‘-
13 hoo h

are constant for a Markovian process with stationary transition probabilitics, the
system failure rate can be expressed as a linear combination of the conditional state
probabilities Qj(t).

For the 3-component system under consideration, we have p;; = p;; = 0 and

Py = ;“z . The system failure rate thus reduces to

r(t) = A,Q,(t)

and calculates to:
{(a) Structure 1
Aot ihy [()‘1')"2)0-)"01—(}‘0‘)‘2)0 Mt o+ ()‘o')‘l)c')"ztl

r(t) = R . ; o3
Aho(hy-hy)e o[—kokz(ko-kz)e b+ hgh (hg-h))e t

(b) Structure 2
(A -2t = l]e‘)‘t + Mt

= 2.\
r(t) Mi(}‘i"?)‘)*')‘)‘i()vi")»)llc'm PR W

(¢} Structure 3
1 }\.3{2

[+ At + YA

r(t) =

These system failure rates are continuous functions and, as shown in general
by Barlow and Proschan [Ref. 3:p. 100], strictly increasing over t. Thus the
3-component system wears out as it ages.

The system failure rate r(t) does not depend on the order in which the
components are arranged within the system (however, Qj(t) does). In the hinut, as
t—= %, r(t) always approaches the minimum failure rate found in the svstem.

C. STATE PROBABILITIES FOUND IN A SYSTEM NOT OBSERVED
CONTINUOUSLY
In the previous sections state probabilitics were derived for two special cases:
(a)  State probabihitics Pj(t) for a system that did not reveal any information

about its condition at time t.
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(b) Conditional state probabilitics Qj(t) for a system that was known to be in

UP-condition at time t.

. - *
We now want to combine both cases and calculate state probabilitics Pj (t) for a

system that was observed in UP-condition at some time s in the past but whose present

condition (at time t) is unknown. Since the system may have failed during (s,t) the

DOWN-state 3 must be included in the analysis. :

As before, we implicitly assume that the system was new when started up at t=0,

i.e., that Z(0)=0. By conditioning

*

P, () = PZ()=] | system UP at s

= Z PlZ(t)=j1Z(s)=1] P|Z(s)=1]| sytem UP at s]
i<y

= Y. Pi5(t-5) Qy(s)

31

and for j=0,1,2 by Equation 3.1

% P..(s
P.(y =Y P..(t-s)—o—*(—l— j=0,1,2
J isg M L= Pys(s) -
Note: This equation is also valid for P;(t), if the sum is taken for 1<j only (since
P{Z(s)= 3| system UP at sj=0). .
Alter calculating the sum, above equation reduces to
H ]
P. (1) = — P, .(1) 1=0,1,2
: =Py
or, in terms of statc probabilitics Pj(t),
* 1
P.(t) = ——P.(t i=0,1,2
5 (0 L= ys) (0 )

Again, the set of conditional state probabilitics for the UP-states of the svstem

mayv be obtained by multiplving cach of the state probabilities Pj(t) bv some factor

c*=ll - P‘(s)]". ITowever, ¢* is a function of s onlv and, once s 1s fixed, it remains
constant over t2 s,

The time s, at which the system was observed to be UP, can be [ocated anywhere
in the interval (0,t). I s=0 then ¢ = 1, and I’j*(t) reduces to Pj(t). as cxpected (the
implicit assumption Z(0)=0 does already include the 'system UP" information). 1f s=t
then ¢ =c, and we obtain the conditional state probabilities Q,(t) investigated in the

last section.




Since Py(t) is monotonously increasing over t, ¢ s always found to be | <<
Therefore the ionditional state probabilities Pj*(t) are bounded by Pj(t) and Qj(t) such
that P(t) < Pj‘(t)SQj(z), i=0,1,2. )

Switching between Pj(t), Pj'(t), and Qj(t) enables us to calculate the state
probabilities for different techniques used in observing the condition of the system. If
the condition of a system is monitored continuously and found to be UP over a period
of time then the state probabilities calculated at any time within the interval will follow
the Qj(t) curves. As soon as observations are interrupted the state probabilitics are
determined by P;(t). If no further observation is taken from the system, then the
increasing uncertainty about the condition of the system will force the state
probabilities associated with the UP-states asymptotically towards their lower

boundaries Pj(t). At the same time, the DOWN-state probability

* 1
= ——|P - <
Py () = ppg IR0 = Pyl

increases from 0 towards its upper bound P(1).

This is illustrated in Figure 3.7 for state | of the svstem. It is assumed that the
system was initially monitored continuously (in UP-condition). At time s, = IXMTTF ™
observation was discontinued until, in & single observation at §y= 2xMTTE, the system
was found to be still in UP-condition. The probability plot for state 1 (bold hne) is
therefore composed of three partial plots using Q,(t), for 0=t=<s,, and Pl*(t) with

s=s, (fors St=s,) and s=s5, (for tZs,).
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APPENDIX A
TRANSITION PROBABILITIES FOR THE 4-STATE MODEL

TABLE 111
TRANSITION PROBABILITIES STRUCTURE 1 ()‘ox)‘f)‘z)

_ ALt
PUU(t) = ¢ "o

A
Py = . '_’)\ (c';‘lt—e')‘ot)
oM
(1) = Mohy [(h-h e ot = (O hye Mt +(h Ao jehey
g2 (;\.0_)\'1)0\0_)"2)()\'1_)\2) 1772 [« B4 01
hohoA ho~A A A X -A
Pyy(h) = - oM (1 2, -hot— o2 oMty Lo lc')‘ztl
(hg-h W g-h ) h-dy) Dy Ay h,
PH(t) = c')‘lt
A
Py = —L— (ol - Ml
l - Al-}"z
i } )‘zt—).zc')‘lt
P = 1= —
‘ : hy-hy,
’ P::m = c';‘z[
P = |-kt
}’”(U = 1
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TABLE IV
TRANSITION PROBABILITIES STRUCTURE 2A (Ay, A, =1,=1)

Po(t) = ot

A
Py () = 5= (M= ety
0

A A

Py(1) = == {[(Ag-Mt — lle'h“' e'kot}
“~ ()\’0_ )..

(g )+ AR (A Mtle M A 20 Rt

Pgs(t) = 1 ()‘o'}‘)z

(¢

= oM
P (1) =
Po(t) = heM

P (1) = 1= (1+ M

Po(t) = M

P,y = 1—eM

Pyy(t) = 1
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TABLE V
R TRANSITION PROBABILITIES STRUCTURE 2B (A,=2,=}, X))
; = oAt
T Pyo(t) = ¢
A A N
Py (1) = (e M =My
01 )-1-)»
A
Por(®) = 3 1)‘ (M= e M ehyy
1
N b = 1— (b 20+ MM (A Mt M+ a2 Mt
: 03 -
: P, (1) = oMt
. N . X
:~ P 2([) = 1 (e- t_e_ lt) |
S ‘ )
; aeM —geMt
3
j: P13(t) =1-- )\1-)‘
; ' Pzz(t) = e'}‘t
|
’ P23(t) = l—e‘)\.t
I P33(t) = 1
.
o |
\':
-
“ -
I
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TABLE VI
TRANSITION PROBABILITIES STRUCTURE 2C (Ay=h, =X, },)

A2 A
P()z(t) = m {[(kz-},)t— le tie Zt}
P (t) = ] [)\-2()\2-2)\.)+)\,)‘,2()\Z_X)t]c‘)\.t+xzc-)‘zt
03 T
= b
P (1) = ™
A PYEEY
Ppa(t) = W) (e M =ch2h
. _ Xze'h — eyt
Pyt = 1= 3
2

Pg:(t) = e')‘zt
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TABLE VII

(. TRANSITION PROBABILITIES STRUCTURE 3 (Ay=h,=%,=})
g Pog(t) = et

_\. Py, (1) = hteM

Pyy(t) = 1ah22e M

: Poy(t) = 1= (1+Aht+ %AeM

& Py = et

:E’j P () = Ao M

v P (1) = 1= (1+AneM

Pyy(t) = M ]
- Pyt = 1—eM
: Py =1
)"

l

=
"
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-

>
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APPENDIX B
SYSTEM CHARACTERISTICS

P
Loy e

- -
A
A A

TABLE VIII
SYSTEM SURVIVAL-, DISTRIBUTION-, DENSITY FUNCTIONS

-
R ‘.’

Structure 1 (AgzA 2k, ):

F(() _ )\.0}"1)"2 )\.1-)\.2 e')"ot—ﬁ)izc')"lt-f- )\0-)‘.1 c')"zt]
(Mg A A gA ) A, Ay M

1. l. l.‘
AV N

PP

1 2
F(t) = 1- hohihy Md, e Mot — My Y MMy c')‘zt]
(Agh (Ao ) -A,) - A A A

0 1 2

Ao
f = 07 "1""2 ) -kt"),-)‘, ot ) At
(t) 0‘0')"1)(}'0')"2)()"1')‘2)[()Vl Apde ot = (hg-h e Mt + (A oA et

: ; Y
‘ .".,’-," '.". LSS

Structure 2 (A ;. k5= A =M

A

_ (A o(he-20)+ AR (A -Mte M+ 220 Ayt
I = itTi iti .
(ki')\')

>l'.l‘ll%l‘.lil.

Ly

. : [ha(has2h)+ A (A -Mtle M A2erh gt
- F(t) = | ——i—14 i\ i
(}"i'}")

A- ’, "l ,I'

X.Z
- M Y Aty oAt
f(t) ( i')")z {{(A-Mt—1e e it}

“,
«

.
REAED>

Structure 3 (hg=A,=A,=LA):

DG
2,

F(1) = (1+At+ %A22)e M

F(t) = 1=(1+At+ mA22)eM

P § l.-’. ’

Fo = arddeM

CLEAREAR)
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